Microbeam Technology and Applications Group
Brief Introduction
High-energy heavy ions with energy of MeV to GeV are widely present in space environments, radiotherapy, and heavy ion accelerator laboratories. Exposure to high-energy heavy ions can cause severe single-event effects, biological radiation effects, and material modification. Microbeam technology that focuses high-energy heavy ions to micron/nanoscale provides precise irradiation, micro/nano fabrication, and material analysis techniques with micrometer resolution at the single-transistor, single-cell, or single-ion levels. Microbeam technology not only helps to understand the interaction between high-energy heavy ions and matter, but is also a unique tool for exploring the application of heavy ion irradiation effect, especially the study of space single-event effect, functional nanomaterial fabrication, and biological effect of heavy ion radiation.
The Group of Microbeam Technology and Applications focuses on ion beam physics and technology. The HIRFL microbeam facility operated by the group realizes the high-energy heavy ion microbeam technology with at 100 MeV/u energy level for the first time in the world, and is the single-ion microbeam facility of the highest energy in the world. Based on this facility, multidisciplinary interdisciplinary experimental research and national laboratory user services such as single-ion hit, single-event effect analysis, irradiation effect and material analysis, online live cell imaging, micro-irradiation of live animals and materials, and information security attack can be carried out.
Research Fields
1) Microbeam/Nanobeam Technology: ion beam focusing technology and ion beam imaging technology at micro, nano and single ions scale. (Condensed matter physics)
2) Material Physics/Radiation Physics: Based on single ion manipulation and heavy ion irradiation effect, to study the radiation-hardening mechanism of new devices, the ion beam modification of new material, and fabrication techniques of nanodevice. (Condensed matter physics)
3) Biophysics: Biophysical aspect of DNA damage repair caused by ionizing radiation. (Biophysics)
Achievements
Publications:
2023
1. Zhuo Zhao, Zaichao Guo, Zhenhua Zhang, Xiaoyu Gui, Zhihao Liang, Jie Liu, Guanghua Du, Jinglai Duan, Huijun Yao. Single graphene nanopore for biomimetic ion channel via tunably voltage-modulated ion transport. Carbon 203:172-180 (2023) (DOI: 10.1016/j.carbon.2022.11.068)
2. Shuangbao Lyu, Yongliang Zhang, Guanghua Du, Cuixia Di, Huijun Yao, Yulong Fan, Jinglai Duan*, Dangyuan Lei*. Double-sided plasmonic metasurface for simultaneous biomolecular separation and SERS detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285:121801 (2023) (10.1016/j.saa.2022.121801)
3. Guangbo Mao, Jinlong Guo, Wenjing Liu, Ruqun Wu, Jing Zhao, Cheng Shen, Hongjin Mou, Junshuai Li, Guanghua Du. Study on the Lateral Scattering of High Energy Heavy Ions Penetrating through Solids. Physica Status Solidi (a)– Applications and Materials Science (In press, DOI: 10.1002/pssa.202200515)
2022
1. Shihao Su, Yifan Zhang, Shengyuan Peng, Linxin Guo, Yong Liu, Engang Fu, Huijun Yao, Jinlong Du, Guanghua Du*, Jianming Xue*. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity. Nature Communications | (2022) 13:4894
2. Jinlong Guo, Guangbo Mao, Wenjing Liu, Cuiping Shao, Ruqun Wu, Yaning Li, Jing Zhao, Cheng Shen, Hongjin Mou, Lei Zhang, Huiyun Li, Guanghua Du*. The Bitmap Decryption Model on Interleaved SRAM Using Multiple-Bit Upset Analysis. IEEE Trans. on Nucl. Sci., 2022 69(8):1857-1864 (DOI: 10.1109/TNS.2022.3186083)
3. Cuiping Shao, Huiyun Li, Guanghua Du, Jinlong Guo, Zujia Miao, Hongmei Zhu. Fault Tolerance Method for Memory Based on Inner Product Similarity and Experimental Study on Heavy Ion Irradiation. Journal of Circuits, Systems, and Computers 31(18):2240006 (2022)
4. 沈程,吴汝群,刘文静,郭金龙,赵靖,毛光博,牟宏进,张磊,杜广华. 电离辐射诱导染色质乙酰化解聚染色质结构. 原子核物理评论, 39(4): 497-504 (2022)
5. Jing Zhao, Guanghua Du*, Huijun Yao, Jinlong Guo, Guangbo Mao, Wenjing Liu, Ruqun Wu, Cheng Shen, Hongjin Mou, Can Zhao, Lei Zhang, Ranran Bu, Jiahui Zheng. Fabrication of double conical PET nanochannel for molecular detection. Vacuum 2022, 202:111198 (10.1016/j.vacuum.2022.111198)
6. Yuhua Dong, Zhuo Zhao, Jing Zhao, Zaichao Guo, Guanghua Du, Youmei Sun, Deyan He, Jinglai Duan, Jie Liu, Huijun Yao*. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. ACS Appl. Mater. Interfaces 14(25):29197–29212 (2022) (DOI: 10.1021/acsami.2c05247)
7. W. Liu, R. Wu, J. Guo, C. Shen, J. Zhao, G. Mao, H. Mou, L. Zhang, G. Du*. High Turnover and Rescue Effect of XRCC1 in Response to Heavy Charged Particle Radiation. Biophy J, 121:1493-1501 (2022) (DOI: 10.1016/j.bpj.2022.03.011)
8. A. Ju, H. Guo, F. Zhang, L. Ding, G. Du, J. Guo, X. Zhong, J. Wei, X. Pan, H. Zhang. Failure Analysis of Commercial Ferroelectric Random Access Memory for Single Event Effect, IEEE Trans. on Nucl. Sci., 2022, 69(4):890-899 (DOI: 10.1109/TNS.2022.3153795)
2021
1. Q. Liu, J. Zhao#, J. Guo, R. Wu, W. Liu, Y. Chen, G. Du*, H. Duan*. Sub?5 nm Lithography with Single GeV Heavy Ions Using Inorganic Resist, Nano Lett. 2021, 21(6):2390–2396 (DOI: 10.1021/acs.nanolett.0c04304).
2. T. Yu, H. Zhang, X. Li, H. Mou, R. Jin, H. Xue, W. Zhang, H. Shen*, G. Du*. An in situ method of measuring electrolyte solution at the solid–liquid interface with MeV He+ beam in a vacuum. Nucl Instrum Meth B 497:24-27 (2021)
3. S. Zhang, Z. Ji, G. Du, J. Liu; X. Zhou, Y. Xie*. Temperature Induced Dimensional Tuning and Anomalous Deformation of Micro/Nanopores. Nano Letters, 2021, 21(7):2766–2772 (DOI: 10.1021/acs.nanolett.0c04708).
2020
1. R. Wu, W. Liu, Y. Sun, C. Shen, J. Guo, J. Zhao, G. Mao, Y. Li, G. Du*. Nanoscale insight into chromatin remodeling and DNA repair complex in HeLa cells after ionizing radiation. DNA Repair, 96:102974 (2020)
4. Y. Li, G. Du*, J. Zhao, J. Guo, R. Wu, W. Liu. G. Mao, C. Shen. Fabrication and Functioning of Magnetically Gated PET Nanochannels. ChemNanoMat 2020, 6, 1075-1079 (2020 cover).
5. 李晓月, 余涛, 毛光博, 郭金龙, 李亚宁, 张海磊, 吴汝群, 刘文静,赵靖, 沈程, 沈皓*, 杜广华*.真空中固液界面的离子束分析研究.原子核物理评论.37(1):82-87(2020)
6. 张战刚; 叶兵; 姬庆刚; 郭金龙; 习凯; 雷志锋*; 黄云*; 彭超; 何玉娟; 刘杰; 杜广华.纳米级静态随机存取存储器的α粒子软错误机理研究.物理学报 2020, 69(13): 255-263.
7. J. Li*, P. An, C. Qin*, C. Sun, M. Sun, Z. Ji, C. Wang, G. Du, J. Liu, Y. Xie*. Bioinspired Dual-Responsive Nanofluidic Diodes by Poly?L?lysine Modification. ACS Omega (5) 4501-4506 (2020)
2019
1. C. Shuang et al., "Leakage Current Degradation in SiC Junction Barrier Schottky Diodes under Heavy Ion Microbeam," 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), Hangzhou, China, 2019, pp. 1-4, doi: 10.1109/IPFA47161.2019.8984872.
8. Y. Li, G. Du*, G. Mao, J. Guo, J. Zhao, R. Wu, W. Liu. Electrical field regulation of ion transport in PET nanochannel. ACS Appl. Mater. Interface 2019, 11, 38055-38060(2019)
9. A. Ponomarov, G. Du*, J. Guo, W.Liu, R. Wu, Y. Li, L. Sheng, A. Ponomarev. Beam Optics of upgraded high energy heavy ion Microbeam in Lanzhou. Nucl Instrum Meth B 461:10-15 (2019)
10. W. Yang, X. Du, J. Guo, J. Wei, G. Du, C. He, W. Liu, S. Shen, C. Huang. Y. Li, Y. Fan. Preliminary single event effect distribution investigation on 28 nm SoC using heavy ion Microbeam. Nucl Instrum Meth B 450:323-326 (2019)
2018
1. P. Wang, M. Wang, F. Liu, S. Ding, X. Wang, G. Du, J. Liu, P. Apel, P. Kluth, C. Trautmann, Y. Wang. Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications 9:569 (2018)
2017
1. W. Liu, G. Du*, J. Guo, R. Wu, J. Wei, H. Chen, Y. Li, J. Zhao, X. Li. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility. Nucl Instrum Meth B 404:125-130 (2017)
11. J. Guo, G. Du*, J. Bi, W. Liu, R. Wu, H. Chen, J. Wei, Y. Li, L. Sheng, X. Liu, S. Ma. Development of single-event-effects analysis system at the IMP microbeam facility. Nucl Instrum Meth B 404:250-253 (2017)
12. J. Wei, G. Du*, J. Guo, Y Li, W. Liu, H. Yao, J. Zhao, R. Wu, H. Chen, A. Ponomarov. The rectification of mono- and bivalent ions in single conical nanopores. Nucl Instrum Meth B 404:219-213 (2017)
Patent:
1. 杜广华,郭金龙,毛光博.离子荧光超分辨成像方法。中国发明专利 (ZL 201710777331.X)
people
Group Leader
Group Members
Dr. WU Ruqun
Dr. GUO Jinlong
Dr. LIU Wenjing
Dr. ZHAO Can
Dr. ZHOU Wenchang
ZHOU Qi (secretary)
Graduate Student
MAO Guangbo
MOU Hongjin
SHEN Cheng
ZHANG Lei
ZHANG Jialong
LI Chenyu
LI Baobei
Alumni
GUO Na
CHEN Hao
WEI Junzhe
LI Xiaoyue
Artem PONOMAROV
LI Yaning
I-Chun CHO
ZHAO Jing