Microbeam Technology and Application Group

Brief Introduction

High-energy heavy ions with energy of MeV to GeV are widely present in space environments, radiotherapy, and heavy ion accelerator laboratories. Exposure to high-energy heavy ions can cause severe single-event effects, biological radiation effects, and material modification. Microbeam technology that focuses high-energy heavy ions to micron/nanoscale provides precise irradiation, micro/nano fabrication, and material analysis techniques with micrometer resolution at the single-transistor, single-cell, or single-ion levels. Microbeam technology not only helps to understand the interaction between high-energy heavy ions and matter, but is also a unique tool for exploring the application of heavy ion irradiation effect, especially the study of space single-event effect, functional nanomaterial fabrication, and biological effect of heavy ion radiation.

The Group of Microbeam Technology and Applications focuses on ion beam physics and technology. The HIRFL microbeam facility operated by the group realizes the high-energy heavy ion microbeam technology with at 100 MeV/u energy level for the first time in the world, and is the single-ion microbeam facility of the highest energy in the world. Based on this facility, multidisciplinary interdisciplinary experimental research and national laboratory user services such as single-ion hit, single-event effect analysis, irradiation effect and material analysis, online live cell imaging, micro-irradiation of live animals and materials, and information security attack can be carried out. 

Research Fields

1) Microbeam/Nanobeam Technology: ion beam focusing technology and ion beam imaging technology at micro, nano and single ions scale. (Condensed matter physics) 

2) Material Physics/Radiation Physics: Based on single ion manipulation and heavy ion irradiation effect, to study the radiation-hardening mechanism of new devices, the ion beam modification of new material, and fabrication techniques of nanodevice. (Condensed matter physics)  

3) Biophysics: Biophysical aspect of DNA damage repair caused by ionizing radiation. (Biophysics) 


Recent Publications: 

1. Wenjing Liu; Ruqun Wu; Jinlong Guo; Cheng Shen; Jing Zhao; Guangbo Mao; Hongjin Mou; Lei Zhang; Guanghua Du. High Turnover and Rescue Effect of XRCC1 in Response to Heavy Charged Particle Radiation. Biophysical Journal, 2022, 121(8): 1-9.  

2. Tao Yu; Hailei Zhang; Xiaoyue Li; Hongjin Mou; Renjun Jin; Huanlu Xue; Wei Zhang; Hao Shen; Guanghua Du. An in situ method of measuring electrolyte solution at the solid–liquid interface with MeV He+ beam in a vacuum. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 497: 24-27.  

3. Qing Liu; Jing Zhao; Jinlong Guo; Ruqun Wu; Wenjing Liu; Yiqin Chen; Guanghua Du; Huigao Duan. Sub5 nm Lithography with Single GeV Heavy Ions Using Inorganic Resist. Nano Letters, 2021, 21(6): 2390-2396.  

4. Shusong Zhang; Zhenming Ji; Guanghua Du; Jie Liu; Xi Zhou; Yanbo Xie. Temperature Induced Dimensional Tuning and Anomalous Deformation of Micro/Nanopores. Nano Letters, 2021, 21(7): 2766-2772.  

5. R. Wu, W. Liu, Y. Sun, C. Shen, J. Guo, J. Zhao, G. Mao, Y. Li, G. Du. Nanoscale insight into chromatin remodeling and DNA repair complex in HeLa cells after ionizing radiation. DNA Repair, 96:102974 (2020) 

6. Y. Li, G. Du, J. Zhao, J. Guo, R. Wu, W. Liu. G. Mao, C. Shen. Fabrication and Functioning of Magnetically Gated PET Nanochannels. ChemNanoMat 2020, 6, 1075-1079 (2020). 

7. 李晓月, 余涛, 毛光博, 郭金龙, 李亚宁, 张海磊, 吴汝群, 刘文静,赵靖, 沈程, 沈皓, 杜广华.真空中固液界面的离子束分析研究.原子核物理评论.37(1):82-87(2020) 

8. J. Li, P. An, C. Qin, C. Sun, M. Sun, Z. Ji, C. Wang, G. Du, J. Liu, Y. Xie. Bioinspired Dual-Responsive Nanofluidic Diodes by PolyLlysine Modification. ACS Omega (5) 4501-4506 (2020) 

9. Y. Li, G. Du, G. Mao, J. Guo, J. Zhao, R. Wu, W. Liu. Electrical field regulation of ion transport in PET nanochannel. ACS Appl. Mater. Interface 2019, 11, 38055-38060(2019)  

10. A. Ponomarov, G. Du, J. Guo, W.Liu, R. Wu, Y. Li, L. Sheng, A. Ponomarev. Beam Optics of upgraded high energy heavy ion Microbeam in Lanzhou. Nucl Instrum Meth B 461:10-15 (2019) 

11. W. Yang, X. Du, J. Guo, J. Wei, G. Du, C. He, W. Liu, S. Shen, C. Huang. Y. Li, Y. Fan. Preliminary single event effect distribution investigation on 28 nm SoC using heavy ion Microbeam. Nucl Instrum Meth B 450:323-326 (2019) 

12. P. Wang, M. Wang, F. Liu, S. Ding, X. Wang, G. Du, J. Liu, P. Apel, P. Kluth, C. Trautmann, Y. Wang. Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications 9:569 (2018) 

13. W. Liu, G. Du, J. Guo, R. Wu, J. Wei, H. Chen, Y. Li, J. Zhao, X. Li. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility. Nucl Instrum Meth B 404:125-130 (2017) 

14. J. Guo, G. Du, J. Bi, W. Liu, R. Wu, H. Chen, J. Wei, Y. Li, L. Sheng, X. Liu, S. Ma. Development of single-event-effects analysis system at the IMP microbeam facility. Nucl Instrum Meth B 404:250-253 (2017) 

15. J. Wei, G. Du, J. Guo, Y Li, W. Liu, H. Yao, J. Zhao, R. Wu, H. Chen, A. Ponomarov. The rectification of mono- and bivalent ions in single conical nanopores. Nucl Instrum Meth B 404:219-213 (2017) 

16. G. Xiao, H. Shen, G. Du. Editorial of 15th ICNMTA conference proceedings. Nucl Instrum Meth B  404:viii-x (2017) 

17. T. Liu, Z. Yang, J. Guo, G. Du, T. Tong, X. Wang, H. Su, W. Liu, B. Wang, B. Ye, J. Liu. Application of SEU imaging for analysis of device architecture using a 25 MeV/u 86Kr ion microbeam at HIRFL. Nucl Instrum Meth B 404:254-258 (2017) 


1. 杜广华,郭金龙,毛光博.离子荧光超分辨成像方法。中国发明专利(ZL 201710777331.X) 



Prof. DU Guanghua 

Phone: +86-0931-4969675

Email: gh_du@impcas.ac.cn 

Mailing Address: 509 Nanchang Road, Lanzhou, 730000, China