2 - 16 A Test Study of γ Transitions from ^{42,43}Ti Nuclei

Xu Shiwei, He Jianjun, Hou Suqing, Yu Xiangqing, Zhang Ningtao Fang Yongde and Liu Minliang

The precise excitation energies of the proton-unbound states for the key nuclides along the rapid-proton process (so called rp-process) path play a very important role in nuclear astrophysics reaction rate calculations. This work reports the preliminary results of a test study of γ transitions from the ^{42,43} Ti nuclei.

The experiment was performed at the HI-13 Tandem Accelerator at China Institute of Atomic Energy (CIAE). A 35 MeV 16 O beam bombarded an isotopically enrich 28 Si metallic foil with a Pb backing (13.8 mg/cm² thick). The excited states in the 42,43 Ti nuclei can be populated via the fusion-evaporation reaction of 28 Si(16 O, 2n) 42 Ti and 28 Si(16 O, n) 43 Ti, respectively. Once the excited states populated, the related γ transitions can be measured and identified by the X- γ -t and γ - γ -t coincidence technique. In the experiment, the γ rays detected with an array consisting of 14 Compton-suppressed HPGe detectors.

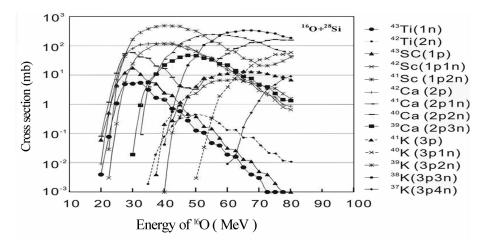


Fig. 1 Reaction cross sections for the ¹⁶ O+²⁸ Si colliding system calculated by an ALICE code^[1].

The reaction cross sections for the $^{16}O+^{28}Si$ colliding system were calculated by an ALICE code $^{[1]}$, as shown in Fig. 1. However, none of γ transition was observed in the experiment because of the low cross sections for the $^{42\cdot43}$ Ti production. The γ transitions from the excited states in ^{42}Sc , ^{39}K and ^{42}Ca were observed. We found that the cross section of the $^{28}Si(^{16}O, 3p2n)^{39}K$ reaction was almost equal to that of the $^{28}Si(^{16}O, 2p)^{42}Ca$ reaction, which is contrary to the theoretical calculations. The data analysis is still in progress.

Reference

[1] M. Blann, H. K. Vonach, Phys. Rev., C28(1983)1475.