

4 - 23 Radiation Effects Study of High-k HfO_2 Gate Device

Li Zongzhen, Liu Jie, Zhai Pengfei, Liu Tianqi and Liu Jiande

The gate dielectric thickness decreases dramatically with the continuous scaling of MOS devices, which has serious consequences on the leakage current and the power consumption of the SiO_2 -based MOS devices. Hafnium dioxide (HfO_2), as a kind of high-k material, are recognized as alternatives to SiO_2 for future advanced gate devices and space applications^[1]. Radiation-induced effects on conventional SiO_2 dielectrics have been investigated. Now, an enormous amount of effort was required to adapt the new high-k systems for radiation hard application. In this work, modifications of heavy ions on the dielectric properties of HfO_2 -metal oxide semiconductor (MOS) capacitors were investigated.

The typical sample structure is W (75 nm) / TiN_2 (5 nm) / HfO_2 (8 nm) /p-Si (substrate). The samples were irradiated by 4 MeV Xe ions at room temperature to ion fluences varied from 1×10^{11} to 1×10^{14} ions/cm². The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the devices before and after irradiation were performed using Keithley S530 integrated system analyzer and shielding probe station.

Fig. 1 shows an example of typical current-voltage characteristics of the HfO_2 MOS capacitor before and after 4 MeV Xe ion irradiation to the fluences of 1×10^{13} and 1×10^{14} ions/cm². It was found that leakage current increased by several orders of magnitude for the highest fluence. The obvious increase in the leakage current would imply that there is a degradation of the insulation properties in the HfO_2 dielectric. This would be expected that the swift heavy ions induced physical damage to the gate dielectric and generate traps from a roughened HfO_2 /Si interface along the latent track^[2].

Fig. 2 shows capacitance-voltage characteristics measured from accumulation to inversion for a non-irradiated HfO_2 capacitor and a HfO_2 capacitor irradiated to 1×10^{14} ions/cm² at 4 and 5 MHz. The values of the capacitance in the accumulation region increase with increasing in test frequency, which indicates the presence of frequency dependent interface states. C-V curves shift to the negative voltage after irradiation by heavy ions, which suggested that positive charge get trapped or a recombination occurs for negatively trapped charge. The “stretch out” of the C-V curves after irradiation was resulted by existence of the net negative charge. The large number of defects induced by irradiation in the HfO_2 thin films are responsible for the increase in oxide trapped charges and leakage current^[3].

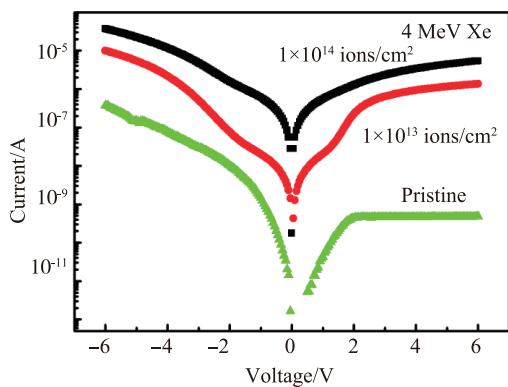


Fig. 1 (color online) I-V characteristics of the HfO_2 MOS capacitor before and after 4 MeV Xe ion irradiation.

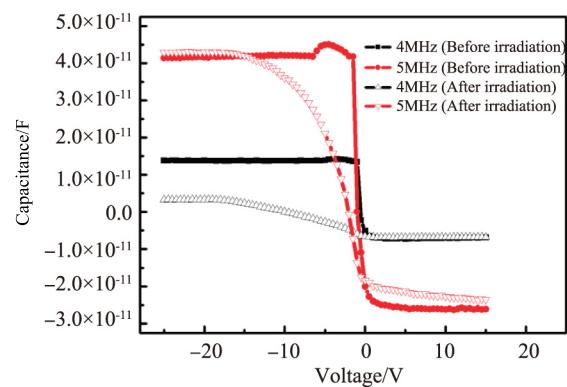


Fig. 2 (color online) C-V characteristics of the HfO_2 MOS capacitors before and after 4 MeV Xe ion irradiation measured at 4 and 5 MHz.

In the next step, the influence of radiation-induced defects and interface states on electrical characterization of the device will be explained via a investigation of the micro-structure of the HfO_2 gate dielectric.

References

- [1] J. H. Choi, Y. Mao, J. P. Chang, Materials Science and Engineering R, 72(2011)97.
- [2] Yao Ma, Zhimei Yang, Min Gong, et al., Nucl. Instr. and Meth. B, 383(2016)160.
- [3] Vikram Singh, N. Shashank, et al., Nucl. Instr. and Meth. B, 269(2011)2765.