

surface effect of the nanostructures. Because of the larger surface-to-volume ratio of the nanowires, a higher fraction of gold atoms resides on the surface and more damage processes can occur on the surface of the nanowires. This can result in the enhanced surface damages and high sputtering yields in the case of thin NWs^[1].

Meanwhile, the sputtered nanoparticles(NPs) from the gold NWs were also observed, as shown in Fig. 2(a~d), these particles around the gold NWs are collected by the carbon membrane of the TEM grid. And most of them distributed around the parent NWs are in the range of 200 nm. As the nanowire's diameter increases, the amount of the sputtered particles increases due to the increased impact of the cross section. In these work, we considered that the formation of these NPs are the molten gold ejected from a displacement cascade in gold NWs^[2].

References

- [1] A. Johannes, H. Holland-Moritz, C. Ronning, *Semiconductor Science and Technology*, 30(3)(2015)033001.
- [2] R. C. Birtcher, S. E. Donnelly, S. Schlutig, *Phys. Rev. Lett.*, 85(23)(2000)4968.

4 - 29 Damage Effects of CVD Single-layer MoS₂ Irradiated by Heavy Ions

Wu Yang, Sun Youmei, Liu Jie, Zhai Pengfei, Guo Hang, Yao Huijun, Liu Jiande and Luo Jie

This work is mainly to study the effect of heavy ion irradiation on the damage of single layer MoS₂. The number of layers of MoS₂ prepared by CVD (chemical vapor deposition) method was determined by optical microscopy and Raman spectroscopy. The monolayer MoS₂ prepared by CVD under high energy ²⁰⁹Bi ion irradiation was analyzed by Raman analysis and AFM observation. And the results are compared and analyzed before and after the beam irradiation of single layer MoS₂ prepared by mechanical stripping method.

Fig. 1 (a) shows the Raman spectra of the single-layer MoS₂ samples corresponding to different fluence ($5 \times 10^{10} \sim 1 \times 10^{12}$ ions/cm²) before and after irradiation with ²⁰⁹Bi ions. It is obvious that the MoS₂ characteristic peak and the peak intensity of E_{2g}^1 and A_{1g} peak are obviously weakened with the increase of irradiation fluence. As shown in Fig. 1 (b), the peak intensity of A_{1g} peak decreased from 3 439 a.u down to 989 a.u after irradiation.

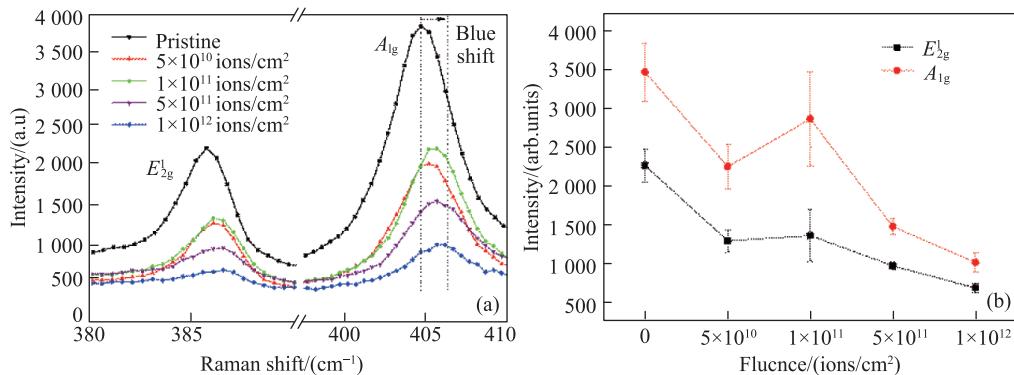


Fig. 1 (a) Raman Spectra of MoS₂ Irradiated by ²⁰⁹Bi Ions (b) The trend of the intensity of the peak of E_{2g}^1 and A_{1g} .

According to the calculation of the first principle, the S atom vacancy caused by the Bi ions in the latent tracks will adsorb the oxygen molecules with the binding energy of up to 2.395 eV in the air. Due to the high binding energy, and the free electrons in MoS₂ are extracted to form bound excitons. The surface electron density is reduced and the p-type doping is carried out^[1], and then the decrease in the number of excitation directly leads to the weakening of the Raman signal, which is reflected in the weakening of the Raman characteristic peak.

In the process of CVD preparation, the surface of the SiO₂ substrate will be deformed due to the tension, the surface of the MoS₂ grown by the redox process will be uneven, resulting in slight hillocks wrinkles. Fig. 2(b) shows the flatness of the general but the continuity of the sample. At the slightly protruding or folds, the interlayer has a weak interaction force - van der Waals force, and the combination of strong interaction force - Coulomb force, both influences the inner surface electron density of the layer between the single and double layer. And the A_{1g} pattern is the representative of the vibration mode in the layer. Its phonon frequency is affected by the electron density, then the performance in the Raman spectrum is blue shift. The peak spacing is shown same to the double peak difference of 1~2 layers of MoS₂ prepared by mechanical stripping method.

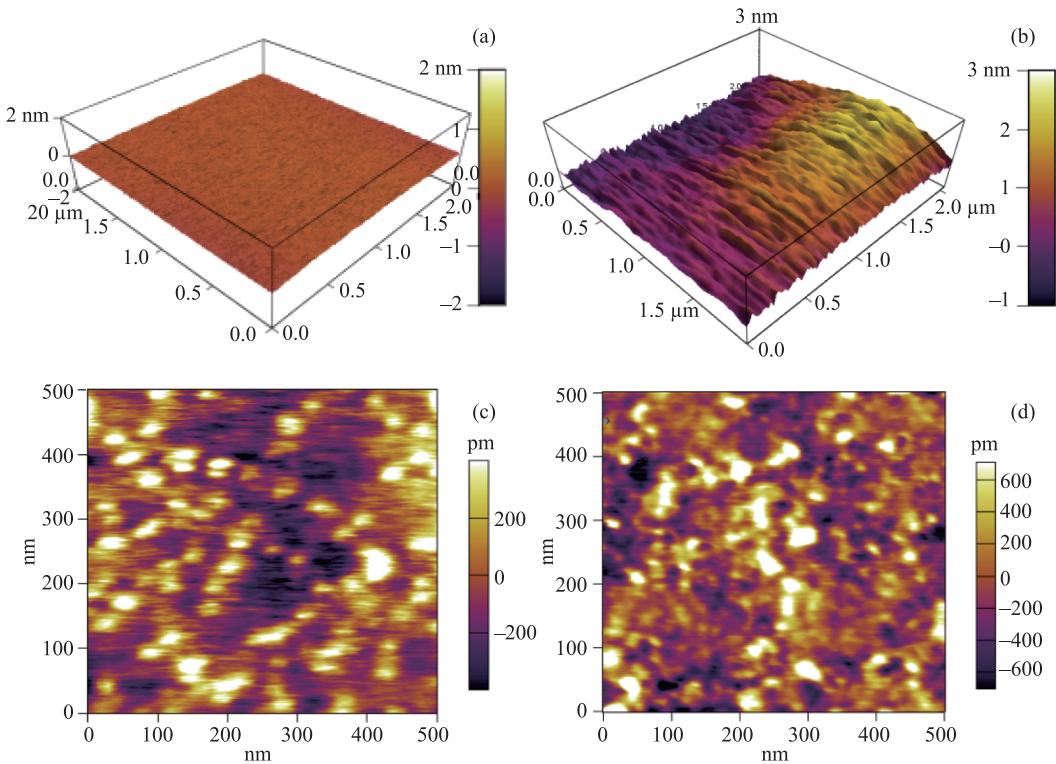


Fig. 2 (a) Mechanical stripping method Single layer MoS₂ sample AFM observation under 2 μ m base plane, (b) CVD method single layer MoS₂ sample AFM observation under 2 μ m base plane, (c) AFM of mechanical stripping method single layer MoS₂ irradiated at 5×10^{10} ions/cm², (d) AFM of CVD single layer MoS₂ irradiated at 5×10^{10} ions/cm².

From the comparison of Fig. 2(c)^[2] and (d), it was found that after irradiation with the same fluence (5×10^{10} ions/cm²), the surface morphology of AFM observed at the same scale (500 nm). The CVD MoS₂ sample has a much smaller number of hillocks than the mechanical stripping method, while the pits are much more. This is due to the difference in the preparation of their own means, in the transfer of ME method, we need to use tape to press the substrate (CVD is natural growth), so that the surface stress itself makes the degree different. At the same time MoS₂ adhesion between the substrate will be weaker than the mechanical stripping method sample, so after the ion transmission of the MoS₂ layer and the substrate by the collision of atoms, the effect obviously weakened.

References

- [1] H. Nan, Z. Wang, W. Wang, et al., *Acs Nano*, 8(6)(2014)5738.
- [2] H. Guo, Y. Sun, P. Zhai, et al., *Applied Physics A*, 122(4)(2016)1. *Growth*, 231(3)(2001)391.