2 - 1 Research Progress of Nuclear Structure Research Group

Liu Minliang

The Group of Nuclear Structure Research at IMP has devoted much effort to the study of in-beam γ -ray spectroscopy and β -decay spectroscopy. One terminal for in-beam γ -ray spectroscopy has been newly built up in 2016. As for β -decay spectroscopy, two points need to be emphasized.

In order to study the in-beam γ -ray spectroscopy, a γ ball was placed at the terminal of new TL2 beam line. Three quadrupole magnets following the dipole magnet are the main building blocks along the beam line. The γ ball consists of 8 clover and 16 HPGe detectors with a CsI ball inside to select the charged particle channel. A wall isolating the γ ball from the quadrupoles was used to shield the radiation produced by the accelerator and depositing energy in the detectors, which may result in a high background. The installation was finished in 2016 and the experiment for in-beam γ -ray spectroscopy is expected to perform in 2017.

Three experiments have been performed during the past few years at the radioactive beam line RIBLL^[1] and gas-filled recoil separator SHANS^[2]. Lifetimes of low-lying excited states were measured via $\beta - \gamma$ and $\gamma - \gamma$ fast timing coincidence.

We noticed that the $7/2^-$. $\rightarrow 3/2^-$ excited energy along the N=21 isotonic chain possibly involving the odd neutron outside the N=20 shell closure across the N=28 shell is 1 943, 1 267, 646 and 910 keV for ⁴¹Ca, ³⁹Ar, ³⁷S and ³⁵Si, respectively^[3]. The minimum value for ³⁷S implies the collapse of the N=28 shell closure. The collapse of the shell closure may provide sufficient valence nucleons for nuclear deformation. In order to check whether the ³⁷S is deformed, the lifetime for the $3/2^-$ state in neutron-rich nucleus ³⁷S was measured at RIBLL by using the fast timing coincidence between the parent nucleus ³⁷P β^- decay and daughter nucleus $3/2^-$. $\rightarrow 7/2^-$ 646 keV γ transition. The primary beam of 70 AMeV ⁴⁰Ar beam was delivered by the Heavy Ion Research Facility in Lanzhou (HIRFL). The secondary beam of ³⁷P was separated and purified by the RIBLL and then deposited into the Si detector to observe its β^- decay. The plastic scintillator and LaBr₃ detectors with good timing performance were used to measure the time signals of β^- particles of parent nucleus ³⁷P and γ rays of daughter nuclei, respectively. A lifetime 193(4) ps has been obtained for the $3/2^-$ state in neutron-rich nucleus ³⁷S. The deduced quadrupole deformation parameter manifests that the ³⁷S is deformed. The result was published in Physical Review C of 2016^[4].

With the ³²S beam delivered from the HIRFL, the nuclei ⁸⁷Nb and ⁸⁷Mo were produced by the respective heavyion fusion-evaporation reactions ⁵⁸Ni (³²S, 3p) and ⁵⁸Ni (³²S, 2pn) at a beam energy of 100 MeV through the 8 μ m Al degrader. A self-supported 400 μ g/cm²⁵⁸Ni foil was employed as the target in the experiment. After evaporation residues were separated from the projectile beams by the SHANS, the nuclei of interest ⁸⁷Nb and ⁸⁷Mo have been obtained with a higher purity and then implanted into a 300 μ m silicon detector to observe the positive electron decays. The time signals of emitted β^+ particles and γ rays following β^+ decays were detected by plastic scintillator and LaBr₃ detectors, respectively. The preliminary mean lifetimes 502, 390, 771 and 304 ps have been extracted for the levels at 266.9 and 400.7 keV in daughter nucleus ⁸⁷Nb and at 200.9 and 470.3 keV in daughter nucleus ⁸⁷Zr^[3].

The nuclei ¹⁴³Eu were produced by the fusion-evaporation reaction ¹²³Sb (²⁴Mg, 4n) at a beam energy of 97.5 MeV. A 400 μ g/cm²natural antimony foil, sandwiched by two carbon foils with thickness of 40 and 10 μ g/cm², was used as the target. It took about 1.4 μ s for the evaporation residues at ground- or long-lived isomeric states to flight through the SHANS. For ¹⁴³Eu most nuclei ware at the 11/2⁻gsomeric yrast state with a lifetime of 50 μ s. In the detection terminal, γ transitions depopulating this 11/2⁻ state to ground state 5/2⁺ and the first 7/2⁺ were detected by LaBr₃ detectors. Analyzing the coincidence events including 117 and 272 keV transitions feeding and depopulating the first 7/2⁺ state, we deduced the lifetime of this state as 109(17) ps. So far this is the shortest lifetime obtained by LaBr₃ detectors in China. Based on this measured lifetime, *l*-forbidden M1 transition and configuration mixing were investigated.

References

- [1] Z. Sun, W. L. Zhan, Z. Y. Guo, et al., Nucl. Instr. and Meth. A, 503(2003)496.
- [2] Z. Y. Zhang, L. Ma, Z. G. Gan, et al., Nucl. Instr. and Meth. B, 317(2013)315.
- [3] http://www.nndc.bnl.gov/ensdf/.
- [4] K. L. Wang, J. G. Wang, X. H. Zhou, et al., Phys. Rev. C, 94(2016)044316.