The predicted $19/2^{-1}$ isomer in ¹²⁹Pd could decay by both electromagnetic transitions and neutron emission with comparable partial life-times, making it a good candidate for neutron radioactivity, a decay mode which is yet to be discovered. More details of this study can be found in the publication^[6].

Study of the octupole deformation properties in 224 U using the RDT method

The strongest octupole correlations are predicted by the HFB calculation to be in the uranium isotopes with $N \sim 134$. Improved total Routhian surface calculations show that the ground states of ^{222,224,226}U have static octupole deformations and the most favorable case for stable octupole deformation appears to be ²²⁴U which is consistent with previous predictions. An experiment studying the octupole properties of ²²⁴U at Argonne National Laboratory was carried out via the ²⁰Ne(²⁰⁸Pb,4n) reaction at 109 MeV using the digital GAMMASHERE + FMA + MCP +DSSD setup. The progress of the data analysis is reported in the annual report^[7].

References

- [1] M. D. Sun, Z. Liu, Physics Letter B. (accepted)
- [2] M. D. Sun, Z. Liu, T. H. Huang, et al., Annual Report IMP&HIRFL, (2016)58.
- [3] T. H. Huang, M. D. Sun, Z. Liu, et al., Annual Report IMP&HIRFL, (2016)55.
- [4] X. Y. Liu, Z. Liu, B. Ding, et al., Annual Report IMP&HIRFL, (2016)57.
- [5] B. Ding, Z. Liu, D. Seweryniak, et al., Phys. Rev. C, 95(2017)024301.
- [6] C. X Yuan, Z. Liu, Phys. Rev. B, 762(2016)237.
- [7] W. Q. Zhang, Z. Liu, T. H. Huang, et al., Annual Report IMP&HIRFL, (2016)59.

2 - 19 First Identification of the $vh_{11/2}$ band in ${}^{117}Ba^*$

Ding Bing, Liu Zhong, Huang Tianheng, Sun Mingdao, Zhang Wenqiang, Liu Xiaoyu and Lu Hongyang

Fig. 1 The $vh_{11/2}$ band in ¹¹⁷Ba deduced in this work.

Taking advantage of the large γ -detector array Gammasphere and the recoil mass separator FMA, highspin states in ¹¹⁷Ba were investigated through the recoil- β -delayed proton decay tagging technique via the heavy-ion induced fusion-evaporation reaction ⁶⁴Zn (⁵⁸Ni, 2p3n) ¹¹⁷Ba, at a beam energy of 305 MeV. Prompt γ rays belonging to ¹¹⁷Ba have been identified furthermore, a rotational band has been identified for the first time and presented as band A in Fig. 1.

In ¹¹⁷Ba (N = 61), the neutron Fermi surface lies between the $\nu g_{7/2}/d_{5/2}$ orbitals and the lower part of the $\nu h_{11/2}$ subshell. Collective bands based on these orbitals have been observed at low excitation energy in most nuclei in this region. Due to the high-j nature of the $\nu h_{11/2}$ orbital, bands built on them are strongly populated and become yrast in these nuclei. The relative excitation energies of the $\nu h_{11/2}$ bands in odd-A $^{119-129}$ Ba are plotted together with band A in Fig. 2 from which we can see that band A follows the systematic trend of the $\nu h_{11/2}$ bands so well that it most likely has the same origin. We note that that the lowest states in the $\nu h_{11/2}$ bands of 117,119,121 Ba are all characterized by a $I^{\pi} = 5/2^{-}$ gvalue, suggesting that they are all associated with the same $\nu h_{11/2}[532]5/2^-$ configuration as proposed in Refs. [1,2] for ^{119,121}Ba.

To investigate further the rotational properties of band A in ¹¹⁷Ba, the experimental aligned angular momenta i_x and Routhians e' were extracted. The unfavored $\alpha = +1/2$ sequence experiences a band crossing at $\hbar\omega = 0.35$ MeV while the favored $\alpha = -1/2$ one

Fig. 2 Excitation-energy systematics for $vh_{11/2}$ bands in odd-A $^{117-129}$ Ba. The data for $^{119-129}$ Ba are taken from Refs. [1] and [3-7].

 ^{125}Ba

¹²⁷Ba ¹²⁹Ba

exhibits an upbend at a slightly higher crossing frequency $\hbar \omega = 0.41$ MeV. The total aligned angular momentum gain is ~65 \hbar for both signatures. Since band A is proposed to be based on the $\nu h_{11/2}[532]5/2^-$ configuration, the first $h_{11/2}$ neutron (EF) alignment is blocked. The following EH (FG) alignment is estimated to occur at a crossing frequency above 0.6 MeV; e.g., much higher than the experimental value. Thus, a neutron alignment is ruled out for this band. A proton of alignment is expected to be responsible for the band crossing. The observed large aligned angular momentum (~65 \hbar for both signatures) agrees well with the alignment of a pair of $\Omega = 1/2$, $h_{11/2}$ quasiprotons.

References

- [1] J. F. Smith, C. J. Chiara, D. B. Fossan, et al., Phys. Rev. C, 61(2000)044329.
- [2]F. Lidén, L. Hildingsson, Th. Lindblad, et al., Nucl. Phys. A, 524(1991)141.
- [3]P. Mason, G. Benzoni, A. Bracco et al., Phys. Rev. C, 72(2005)064315.
- B. Cederwall, A. Johnson, R. Wyss et al., Nucl. Phys. A, 529(1991)410. [4]
- [5] R. Wyss, F. Lidén, J. Nyber et al., Z. Phys. A, 330, 123 (1988).
- [6]A. Dewald, A. Schmidt, G. Alexius et al., Eur. Phys. J. A, 3, 103(1998).
- A. P. Byrne, K. Schiffer, G. D. Dracoulis, et al., Nucl. Phys. A 548, 131(1992). [7]

^{*} Foundation item: "100 Person Project" of Chinese Academy of Sciences and National Natural Science Foundation of China (11405224 11675225, U1632144, 11635003)