

Fig. 2 A schematic representation of α transitions from ground state of 223 U into few levels of 219 Th. See text for details.

References

- [1] A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, et al., Z. Phys. A, 338(1991)363.
- [2] A. N. Andreyev, JINR-E7, 97(1997)246.
- [3] M. A. Preston, Phys. Rev., 71(1947)865.
- [4] J. O. Rasmussen, Phys. Rev., 113(1959)1593.

 \leq 10 ms, position window of \leq 1 mm.

- [5] J. O. Rasmussen, Phys. Rev., 115(1959)1675.
- [6] R. K. Sheline, C. F. Liang, P. Paris, et al., Phys. Rev. C, 49(1994)725.

2 - 23 Study of the Octupole Deformation Properties in ²²⁴U Using the RDT Method

Zhang Wenqiang, Liu Zhong, Huang Tianheng, Ding Bing, Sun Mingdao, Liu Xiaoyu and Lu Hongyang

The nuclear reflection asymmetry is attributed to octupole correlation, *i.e.* the coupling between single-particle orbits with opposite parities and $\Delta l = \Delta j = 3$ near the Fermi surface. The strongest correlations tend to occur just above closed shells, namely at particle (proton or neutron) numbers 34 ($g_{9/2} \otimes p_{3/2}$ coupling), 56 ($h_{11/2} \otimes d_{5/2}$ coupling), 88 ($i_{13/2} \otimes f_{7/2}$ coupling) and 134 ($j_{15/2} \otimes g_{9/2}$ coupling). An overview of the experimental and theoretical evidence for octupole correlations is given in Ref. [1]. The strongest octupole correlations are predicted by the HFB calculation to be in the uranium isotopes with $N \sim 134$. Improved total Routhian surface calculations^[2] show that the ground states of ^{222,224,226}U have static octupole deformations and the most favorable case for stable octupole deformation appears to be ²²⁴U, which is consistent with previous predictions^[3]. An experiment for studying the octupole properties in ²²⁴U was carried out at ANL(Argonne National Laboratory).

The ²⁰Ne(²⁰⁸Pb,4n) reaction at 109 MeV was used to populate the excited states of ²²⁴U and the digital GAM-MASHERE + FMA + MCP +DSSD^[4] setup was used to identify the strongest γ -rays of ²²⁴U in this experiment. The production cross-section of ²²⁴U was expected to be around 1 µb based on the HIVAP calculations. A 0.4 mg/cm² thick ²⁰⁸Pb target was used. The average beam current was about 30 pnA and lasted 6 d.

The digital data acquisition system which can record the signal waveforms was used, and utilized the RDT(recoil decay tagging)^[5] technique and waveform analysis^[6] method were utilized to identify ²²⁴U unambiguously. Specifically waveform analysis can give accurate energy and half-life of α decay of ²²⁴U. Contrast to traditional method, the advantage of waveform analysis method is embodied in extracting the single energy from superposition signals (waveforms). An example of superposition waveforms shown in Fig. 1. The resolved α energy spectrum is shown in Fig. 2 and obviously the statistics is very low. The statistics of the correlated γ is too low for γ - γ coincidence analysis. The much lower statistics than expected is most likely due to that the ²²⁴U recoils were not transported

to the focal plane of FMA. In this experiment the highest statistics was obtained for ²²¹Th. Its γ energy spectrum obtained through γ -recoil coincidence, is shown in Fig. 3, in agreement with previous results^[7].

Fig. 3 (color online) The γ energy spectrum of ²²¹Th. The energy values of the strongest γ rays of ²²¹Th are marked in the figure.

We will propose to study 224 U again using the 48 Ca $(^{180}$ Hf,4n) reaction at 207 MeV on AGFA at ANL, which is to be commissioned in 2017.

References

- [1] P. A. Butler, W. Nazarewicz, Rev. Mod. Phys., 68(1996)349.
- [2] H. L. Wang, H. L. Liu, F. R. Xu, Phys. Scr., 86(2012)035201.
- [3] W. Nazarewicz, P. Olanders, I. Ragnarsson, et al., Nucl. Phys. A, 429(1984)269.
- [4] Davids C N, Back B B, Bindra K, et al., Nucl. Instr. and Meth. B, 70(1992)358.
- [5] E.S. Paul, Phys. Rev. C, 55(1997)R2137.
- [6] Mark Christopher Drummond, Spectroscopy of ^{163,165}Os and ¹⁶⁴Ir : [D].University of Liverpool : Oliver Lodge Laboratory, (2013).
- [7] S. K. Tandel, M. Hemalatha, Phys. Rev. C, 87(2013)034319.

2 - 24 Research Progress of Heavy Ion Reaction Group

Wang Jiansong¹, Yang Yanyun¹, Ma Peng¹, Jin Shilun¹, Ma Junbing¹, Liu Xingquan¹, Bai Zhen¹, Ma Weihu^{1,2}, Wang Qi¹, Hu Qiang^{1,4}, Yu Gongming¹, D. Patel¹, Gao Zhihao^{1,2}, Duan Fangfang^{1,3}, Zhang Xing^{1,3}, Jiao Lei^{1,4},

Yu Yuechao^{1,5}

(¹ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;

² University of Chinese Academy of Sciences, Beijing 100049, China;

- ³ Southwest University, Chongqing 400715, China;
- ⁴ Chongqing University, Chongqing 400044, China;

⁵ Yunnan University, Kunming 650091, China)

In 2016, the environment of the power supply of RIBLL1 is improved by building a closed space with air condition. It will be good for the magnetic stability which is directly affected by the stability of the power supply. There are 9 experiments, more than 1 165.5 h beam-time, carried out at the RIBLL1. The users are from Peking University, China Institute of Atomic Energy, Shanghai Institute of Applied Physics, National Space Science Center, Institute of High Energy Physics and Institute of Modern Physics. The research topics are as the following, elastic scattering of proton dripline nuclei ¹²N and ¹³O, transfer reaction and elastic scattering study of the mirror nuclei ¹⁰Be and ¹⁰C, measurement of the fusion reaction cross section of ¹⁶O+⁴⁰Ar near coulomb barrier, experimental study of the giant resonance of the neutron-rich isotopes ³²⁻³⁴Al, experimental study of the analogous Holy state of ¹¹C, study of the linear molecular state of ¹⁴C and measurement of the decay of ⁴⁵Cr and ⁴⁹Fe, *etc.* Two experimental results, which were performed in 2015, have been published in 2016. One is the revalidation of the isobaric multiplet mass equation at A = 53, $T = 3/2^{[1]}$. Another is lifetime measurement of the first excited state in ³⁷S^[2].

The different behaviors of the elastic scattering between the neutron halo nucleus ¹¹Be and the proton halo nucleus ⁸B are investigated using the Continuum Discretized Coupled Channel (CDCC) method^[3]. The Coulomb potential and centrifugal potential of the valence nucleon in ¹¹Be and ⁸B are found to play an important role in the different angular distributions of the elastic scattering differential cross sections. A new measurement of the elastic