
2 - 19 Introduction to the SEASTAR Data Analysis

Ding Bing, Liu Zhong, Huang Tianheng, Sun Mingdao, Xu Zhengyu^{1,2}, Lee Jenny^{1,2}, Pieter Doornenbal², Obertelli Alexandre^{2,3} and the SEASTAR collaboration

(¹Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong; ² RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; ³ CEA Saclay, Service de Physique Nucl'eaire, F-91191 Gif-sur-Yvette, France)

The first SEASTAR (Shell Evolution and Search for Two-plus energies At RIBF) campaign was carried out in May 2014. We are analyzing the data for $^{58-63}$ V and $^{63-66}$ Mn.

The experiment was performed at the Radioactive Isotope Beam Factory in RIKEN. A high-intensity 238 U beam was accelerated to bombard beryllium target to produce secondary beams. The $B\rho-\Delta E-B\rho$ method was applied to select and purify secondary beams. An ionization chamber located at the focal point F7 (F11) measured the energy loss ΔE , yielding the fragments' element number Z in BigRIPS (ZDS)^[1]. The time-of-flight (TOF) was measured with two plastic scintillators placed at the focal points F3 (F9) and F7 (F11), enabling the deduction of the mass-to-charge ratio A/q in BigRIPS (ZDS)^[1]. The resultant PID plots are presented in Figs. 1(a) and (b). However, the resolution of A/q for ZDS is not good enough, it is corrected with the position and angle measurements at F9 and F11; the corrected plot is shown in Fig. 1(c). In order to analyze one certain reaction channel, the radioactive projectile and the neutron-rich product can be selected in the PID plots as shown in Fig. 1.

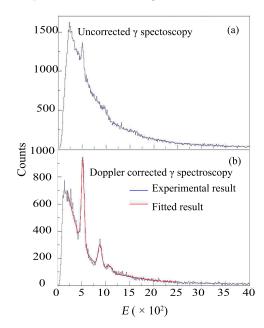


Fig. 1 (color online) (a) BigRIPS PID; (b) ZDS PID; (c) Improved ZDS PID. The 69 Co projectile and the 68 Fe product have been chosen in the Figure respectively, corresponding to the 69 Co (p, 2p) 68 Fe reaction channel.

Fig. 2 (color online) (a) Preliminary γ spectroscopy of $^{68}{\rm Fe};$ (b) Doppler corrected γ spectroscopy of $^{68}{\rm Fe}.$

Given the reaction channel, γ rays belonging to the interested nucleus can be deduced (Fig. 2(a)), however, no obvious γ peak can be seen in the preliminary spectroscopy due to the Doppler shift effect. So, Doppler correction has to be made according to the formula $E_{\text{true}} = E_{\text{detected}} \times (1-\beta\cos\theta)/\text{sqrt}(1-\beta^2)$. A special tracking system MINOS, *i.e.*, a thick liquid hydrogen target coupled to a compact time projection chamber serving as a vertex tracker^[2], was used in the experiment aiming at improving the luminosity by a significant factor compared to standard solid-target material. The γ ray emission angle θ and the velocity β of the secondary reaction product can be extracted from the reaction point in the liquid hydrogen target. The Doppler corrected γ spectroscopy was shown in Fig. 2(b).

References

- [1] N. Fukuda, T. Kubo, T. Ohnishi, et al., Nucl. Instr. Meth. B, 317(2013)323.
- [2] A. Obertelli, A. Delbart, S. Anvar, et al., Eur. Phys. J. A, 50(2014)8.