4 - 14 Observation of Double Scattering of Relatively High-energy Electrons in He²⁺-argon Collisions*

Gao Yong, Ma Xinwen, Zhu Xiaolong, Feng Wentian, Zhang Ruitian, Guo Dalong, Yan Shuncheng and Zhao Dongmei

We have investigated the single capture with simultaneous single ionization in He²⁺ collisions with argon by means of reaction microscopes^[1]. Here, we report the dependence of the azimuth angle (φ_e) of the relatively high-energy electrons (kinetic energy > 20 eV) on the transversal recoil momentum ($p_{r\perp}$) in single capture with double ionization process for 30 keV/u He²⁺ collisions with Ar. It is noted that the relatively high-energy electrons mainly result from binary encounter (BE) between the target electrons and the projectiles for the present reaction channel.

Fig. 1 (color online) Azimuth angle distributions of the relatively high-energy electrons for the transverse recoil momentum range of $0\sim4$, $4\sim8$, $8\sim15$, $15\sim30$ a.u., respectively. Only statistical errors are presented. The lines are guides for the eyes.

Fig. 1 shows that the azimuth angle distributions of the relatively high-energy electrons which first hit the electron detector in a single collision for the transverse recoil momentum ranges of $0\sim4$, $4\sim8$, $8\sim15$ and $15\sim30$ a.u., respectively. The azimuth angle is defined by the transversal momentum of the recoil ion and the emitted electron. In the presentations, the recoil ions are located at 0° . It is found that the relative intensity of peak at 180° strongly increased while the one at 0° decreased rapidly with $p_{r\perp}$ increasing. This is because that the trajectories of most of the relatively high-energy electrons are close to the target cores and parts of relatively high-energy electrons undergo the rescattering on the target cores at large $p_{r\perp}$, like the observation in^[2]. The rescattering causes that the relatively high-energy electrons emitted initially at near 0° are emitted at near 180° and the probabilities of the rescattering increase with $p_{r\perp}$. In Fig. 1(d), the intensity of the peak at 180° is much more than that at 0° . It demonstrates that the rescattering by the target core plays an important role in BE electron emission process at large $p_{r\perp}$ for the present reaction.

References

- [1] X. Ma, R. T. Zhang, S. F. Zhang, et al., Phys. Rev. A, 83(2011)052707
- [2] U. Bechthold, S. Hagmann, J. Ullrich, et al., Phys. Rev. Lett, 79(1997)2034.

^{*} Foundation item: Major State Basic Research Development Program of China (973 Program, 2010CB832902), and National Natural Science Foundation of China (10979007, 10974207, 11274317)