4 - 20 Electrons Guiding through a Plate Capillary

Xue Yingli, Yu Deyang, Liu Junliang, Zhang Mingwu, Yang Bian, Zhang Yuezhao and Cai Xiaohong

The guiding effect of 3 keV Ne⁷⁺ ions passing through an insulating PET nanocapillaries was found in 2002 by N. Stolterfoht et al^[1]. Since then considerable work^[2] has been done to investigate slow highly charged ions (HCIs) interacting with inner surfaces of various insulating capillaries. It has been shown that the guiding effect is prevalent in the transmission of slow HCIs.

Similar guiding phenomena were also observed for electrons transmitted through capillaries (see, e.g., Ref. [3-5]). However, the experiments showed that transmission efficiency of electrons was significantly lower than that of HCIs. Moreover, it revealed that portion of the transmitted electrons suffered significant energy-loss.

We investigated the transmission of $0.8 \sim 3$ keV electrons through a plate capillary with a gap of 0.4 mm and a length of 20 mm. The capillary consists of a pair of high pure (99.999%) quartz glass plates of 120 mm long, 20

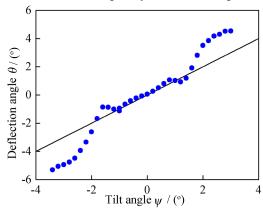


Fig. 1 — (color online) The dependence of the deflection angle on the capillary tilt angle for 1.5 keV electrons passing through a plate capillary. The solid line represents $\psi = \theta$.

mm wide and 15 mm thick. The front and back ends of the capillary are grounded. The electron beam was produce by an electron gun with a cathode of ${\rm LaB_6}$.

Fig. 1 shows the dependence of the deflection angle on the capillary tilt angle. Contrast to previous results with slow HCIs^[1,2] or electrons at similar energy^[3-5], we observed that the electrons were transmitted the capillary along its axis for smaller tilt angle. However, with the tilt angle increasing further, the deflection angle remained unchanged at first, then increased quickly and followed by a slightly slow increasing. We also observed that the transmitted electron fraction was higher than that of direct transmission. In addition, transmitted electrons kept their initial energy.

References

- [1] N. Stolterfoht, J. H. Bremer, V. Hoffmann. et al., Phys. Rev. Lett, 88(2002)133201.
- [2] C. Lemell, J. Burgdörfer, F. Aumayr, Prog. Surf. Sci, 88(2013)237.
- [3] S. Das, B.S. Dassanayake, N. Stolterfoht[†], et al., Phys. Rev. A, 76(2007)042716.
- [4] A. Milosavljevic, et al., Phys. Rev. A, 75(2007)030901(R).
- [5] B. S. Dassanayake, S. Das, R. J. Bereczky, et al., Phys. Rev. A, 81(2010)020701(R).