4 - 26 Mass Independence of Ion Guiding through an Insulating Nanocapillary Liu Shidong, Zhao Yongtao, Wang Yuyu, Zhou Xianming, Cheng Rui and Lei Yu In this report, we present a simulated result on the ion-mass independence of the guided transmission, which is in agreement with the previous experimental results^[1]. In order to search the influence of the ion mass on guided transmission, various species of ions used as projectiles in simulations. Fig. 1 shows the transmission fractions for Ne^{7+} , Ar^{7+} , Kr^{7+} , and Xe^{7+} ions. These data were acquired for tilt angle of 2 $^{\circ}$ in energy of 7 keV. It is seen that all of ion fractions gradually rises after a time delay, and finally reach stable. Fig. 1 (color online) Transmitted ion fraction of Ne⁷⁺, Ar⁷⁺, Kr⁷⁺, and Xe⁷⁺. The energy of these ions are fixed at 7 keV. The tilt angle is 2° . To analyze the simulated data, we fitted the data by the expression $f(t) = f_{\infty} (1 - \exp[(t - \tau_s)/\tau_c])$, where τ_s is a threshold denoting the time delay for the ion transmission, τ_c is characteristic for the capillary charging and f_{∞} represents the fraction at equilibrium. The fitting parameters τ_s , τ_c , and f_{∞} are summarized in Table 1, which are found to be nearly equal relative. This finding provides direct evidence that ion guiding though the insulating capillaries is independent of ion mass. | Ion | $ au_{ m c}/{ m min}$ | $ au_{ m s}/{ m min}$ | f_{∞} | |--------------------|-----------------------|-----------------------|-------------------| | Ne^{7+} | $8.16 {\pm} 0.85$ | $3.33 {\pm} 0.67$ | $0.45 {\pm} 0.01$ | | Ar^{7+} | $9.38{\pm}0.93$ | $3.33 {\pm} 0.67$ | $0.45 {\pm} 0.01$ | | ${ m Kr^{7+}}$ | $8.42 {\pm} 0.90$ | $3.33 {\pm} 0.67$ | $0.44 {\pm} 0.01$ | | $\mathrm{Xe^{7+}}$ | $8.24 {\pm} 0.90$ | $3.33 {\pm} 0.67$ | $0.44 {\pm} 0.01$ | Table 1 Values of parameters τ_s , τ_c , and f_{∞} . ## Reference [1] N. Stolterfoht. Phys. Rev. A, 77(2008)032905.