[9] D. Y. Chen, X. Liu, T. Matsuki, Eur. Phys. J., C72(2012)2008.

1 - 7 Does Enhancement Observed in $\gamma\gamma \rightarrow DD$ Contain Two *P*-wave Higher Charmonia?

Chen Dianyong

As the *P*-wave spin-triplet charmonium spectrum becomes more abundant, however, an urgent and crucial question emerges out of the study on the first radial excitation of *P*-wave charmonia. Very recently, the BaBar Collaboration^[1] confirmed the observation of X(3915) in the $\gamma\gamma \rightarrow J/\pi\omega$ process and indicated that X(3915) is a $\chi_{c^0}(2P)$ charmonium by a spin-parity analysis. This new observation is consistent with the prediction of the property of X(3915) given in Ref. [2]. Thus, these experimental measurements show that the mass of X(3915) as the first radial excitation of $\chi_{c^0}(3415)$ is very close to that of $\chi_{c^2}(2P)$ and above the $D\overline{D}$ threshold. Additionally, the decay behavior of $\chi_{c^2}(2P)$ and $\chi_{c^0}(2P) \rightarrow D\overline{D}$ is a dominant contribution to the total width^[2]. Since Z(3930) was already observed in the $D\overline{D}$ invariant mass spectrum of the $\gamma\gamma \rightarrow D\overline{D}$ process^[3], we believe that $\chi_{c^0}(2P)$ should exist in the same data samples of the $D\overline{D}$ invariant mass spectrum, where $\chi_{c^0}(2P)$ and Z(3930) are assumed to have the same spatial wave functions. However, the present experiment did not report any evidence of $\chi_{c^0}(2P)$ in this process^[3], which obviously contradicts the above general analysis. This is a new puzzle when studying the *P*-wave higher charmoniant.

Due to the peculiarity of $\chi_{c^0}(2P)$, we propose a novel conjecture to solve this puzzle, i. e., the enhancement structure observed in the $D\overline{D}$ invariant mass spectrum of the $\gamma\gamma \rightarrow D\overline{D}$ process should contain both $\chi_{c^0}(2P)$ and $\chi_{c^2}(2P)$ signals. To testify that this conjecture is reasonable, in the following analysis we shall construct a model depicting the $\gamma\gamma \rightarrow D\overline{D}$ process, where we will consider both $\chi_{c^0}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$, which are important properties of P-wave higher charmonia. What is more important is that we find a complete series of P-wave spin-triplet charmonia including the established ground states and their corresponding first radial excitations. Of course, this will inspire experimentalists' interest in studying these $\chi_{c^0}(2P)$ and $\chi_{c^2}(2P)$ and $\chi_{c^2}(2P)$ in future experiment, too.

Fig. 1 Best fit to the $D\overline{D}$ invariant mass spectrum and $\cos\theta$ distribution of $\gamma\gamma \rightarrow D\overline{D}$.

In general, $\gamma(k_1)\gamma(k_2) \rightarrow D(p_1)\overline{D}(p_2)$ occurs via two different mechanisms. The first mechanism is the so-called direct process, which provides the background contribution when studying the $D\overline{D}$ invariant mass spectrum. The second mechanism is the intermediate resonance state contribution to this process, which is from the s-channel. The initial $\gamma\gamma$ and final $D\overline{D}$ are connected by the intermediate resonances with $J^P = 0^+, 2^+$, where the parity and total quantum number of the intermediate state are constrained by both the initial $\gamma\gamma$ and final $D\overline{D}$. When analyzing the data of Belle and BaBar, we select $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ as the intermediate states, which are the first radial excitations of $\chi_{c0}(3415)$ and $\chi_{c2}(3556)$, respectively. These ground states can also contribute to $\gamma\gamma \rightarrow D\overline{D}$ as the intermediate resonances. However, since the masses of $\chi_{c0}(3415)$ and $\chi_{c2}(3556)$ are far away from the energy range discussed here, the high-mass tail of these resonances only provide one of the backgrounds to the $D\overline{D}$ invariant mass spectrum in the energy range (>3.7 GeV). The amplitudes are in the form,

$$M_{
m NOR} = g_{
m NOR} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu} \left(T_{\mu\nu}^{0} + c_{02} T_{\mu\nu}^{2}\right) F(s),$$

 $M_{\chi_{c0}(2P)} = rac{ig_{\chi_{c0}(2P)\eta} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu} T_{\mu\nu} g_{\chi_{c0}(2P)D\overline{D}}}{s - m_{\chi_{c0}(2P)}^{2} + im_{\chi_{c0}(2P)} \Gamma_{\chi_{c0}(2P)}},$
 $M_{\chi_{c2}(2P)} = rac{ig_{\chi_{c2}(2P)\eta} \epsilon_{1}^{\mu} \epsilon_{2}^{\nu} \epsilon_{\mu\nu\alpha\beta} \beta^{\alpha\beta\lambda}}{s - m_{\chi_{c0}(2P)}^{2} + im_{\chi_{c0}(2P)} \Gamma_{\chi_{c0}(2P)}} (-g_{\chi_{c2}(2P)D\overline{D}} i p_{1
ho} i p_{2\lambda})$

Thus the total amplitude is,

 $M_{ ext{Total}} = M_{ ext{NOR}} + \mathrm{e}^{i\!\!\!/\phi_0} M_{\chi_{c0}(2P)} + \mathrm{e}^{i\!\!\!/\phi_2} M_{\chi_{c2}(2P)}.$

With above amplitudes, we can obtain the differential cross sections of $\gamma(k_1)\gamma(k_2) \rightarrow D(p_1)\overline{D}(p_2)$. By fitting the experimental data of $D\overline{D}$ invariant mass spectrum and $\cos\theta$ distribution, we can fix the free parameters in the amplitudes. In Fig. 1, we present our best to the $D\overline{D}$ invariant mass spectrum and $\cos\theta$ distribution. From the figure we can conclude that one can include $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ in present data of $\gamma\gamma \rightarrow D\overline{D}^{[4]}$.

References

- [1] J. P. Lees, et al., arXiv:1207.2651 [hep-ex].
- [2] X. Liu, Z. G. Luo, Z. F. Sun, Phys. Rev. Lett., 104(2010)122001.
- [3] S. Uehara, et al., Phys. Rev. Lett., 96(2006)082003.
- [4] D. Y. Chen, J. He, X. Liu, et al., Eur. Phys. J., C72(2012)2226.

1 - 8 Neutrino Production based on Proton Linear Accelerator

Yong Gaochan

We investigated proton- and ³He-induced reactions on a ¹⁹⁷Au target at beam energies of 2.8, 5, 10, and 16.587 GeV/u, and found that compared with proton-induced reactions, ³He-induced reactions give larger cross sections of pion production, about 5 times those of the proton-induced reactions. And more importantly, pion production from ³He-induced reaction is more inclined to low-angle emission. Neutrino production via positively charged pion is also discussed accordingly.

Fig. 1 Production cross sections of π^- (left panel) and π^+ (right panel) from p + Au at the incident beam momentum of 17.5 GeV/c ($E_{\text{beam}} \approx 16.587 \text{ GeV/u}$) shown in bins of $\cos\theta$ (relative to beam direction). Numbers in the legend refer to the center of each bin, taken from Ref. [1].