1 - 18 Density Dependence of Nuclear Symmetry Energy Constrained by Mean-field Calculations

Dong Jianmin, Zuo Wei, Gu Jianzhong and Lombardo Umberto

Fig. 1 Comparison between the L values obtained in the present work and those from other recently various analyses.

The symmetry energy that characterizes the isospin-dependent part of the equation of state (EOS) of asymmetric nuclear matter plays a crucial role in many issues of nuclear physics as well as astrophysics. We established a relation for three quantities S_0 , L, and $K_{\rm sym}$ in widely different mean-field interactions^[1]. With this relation and other constraint conditions, the density dependence of the nuclear symmetry energy $S(\rho)$ has been investigated in the present work and compare the results with those by other analyses^[2-8], as shown in Fig. 1. With the obtained density dependence of the symmetry energy, the neutron skin thickness of ²⁰⁸Pb and some properties of neutron stars were analyzed.

It is found that the expression $S(\rho)=S_0\left(\rho/\rho_0\right)\gamma$ or $S(\rho)=12.5\left(\rho/\rho_0\right)^{2/3}+C_\rho\left(\rho/\rho_0\right)^{\gamma}$ does not reproduce the density dependence of the symmetry energy as predicted by the mean-field approach around nuclear saturation density. The L and $K_{\rm sym}$ val-

ues in the present study are (56 ± 24) and (-125 ± 79) MeV, respectively, and the neutron skin thickness of 208 Pb is (0.185 ± 0.035) fm.

References

- [1] Dong Jianmin, Zuo Wei, Gu Jianzhong, et al., Phys. Rev., C85(2012)034308.
- [2] A. Carbone, G. Colo, A. Bracco, et al., Phys. Rev., C81(2010)041301(R).
- [3] M. Liu, N. Wang, Z. X. Li, et al., Phys. Rev., C82(2010)064306.
- [4] M. B. Tsang, Y. Zhang, P. Danielewicz, et al., Phys. Rev. Lett., 102(2009)122701.
- [5] M. Warda, X. Vinas, X. Roca-Maza, et al., Centelles, Phys. Rev., C80(2009)024316.
- [6] P. Danielewicz, J. Lee, Nucl. Phys., A818(2009)36.
- [7] D. V. Shetty, S. J. Yennello, G. A. Souliotis, Phys. Rev., C75(2007)034602.
- [8] L. W. Chen, C. M. Ko, B. A. Li, Phys. Rev. Lett., 94(2005)032701.

1 - 19 Exotic Hill Problem: Hall motions and symmetries

Zhang Pengming and P. A. Horvathy¹

The Hill problem arises as an approximation for nearly circular trajectories to Newton's gravitational equations written in rotating coordinates for bodies moving around a central mass. The original example is provided by the "Moon-Earth-Sun" system from [1]. Hill's equations have been also applied to stellar dynamics, with a "star cluster" replacing Moon and Earth, and the "Galactic Center" playing the role of the Sun.

Guided by the analogy with the noncommutative-Landau problem^[2], we extended our previous study of Hill's equation to exotic particles. Our most interesting result states that for a critical angular-velocity i. e. for a critical radius determined by the noncommutative parameter θ , the only motions are those determined by the Hall law. The role of θ is to enhance the "Hall-type" behavior, eliminating all the others in the critical case $\Delta=0$.

Except for the lack of rotational symmetry due to the anisotropic oscillator-term, our results are reminiscent of those for the noncommutative-Landau problem, and generalize those for $\theta = 0$. It is also worth

¹ Laboratoire de Mathématiques et de Physique Théorique, Université de Tours, Tours, France.