3 - 38 Optical Characteristics of AlN by Irradiated with High Energy ²³⁸U Ion¹

Song Yin, Zhang Chonghong, Yang Yitao, Men Yancheng and Gou Jie

AlN thin film irradiated with 100 MeV U ions using the HIRFL-SFC (Heavy Ion Research Facility in Lanzhou) facility in Lanzhou were investigated by Infrared spectra, Raman spectra and fluorescence spectroscopes. It appeared $A_1(TO)$, $A_1(LO)$, $E_1(TO)$ and E_2 Phonon vibration absorption mode to irradiated samples. Fig. 1 showed the FTIR spectra of AlN irradiated with 100 MeV ²³⁸U ions. The Al-N bonds vibration absorption peak is located at 652 cm⁻¹. With the increase of irradiation dose, vibration absorption band appeared certain broadening phenomena and After irradiation with the $E_1(TO)$ Phonon vibration absorption peak into one. Transverse optical phonon absorption peak $E_1(TO)$ for 670 cm⁻¹ also become more and more obvious after irradiation. Irradiation made the Al-N bonds fracture and formed Al-O bonds. Fig. 2 and Fig. 3 demonstrated the Enhance luminous peak after irradiation of AlN. Blue light emission band are related to V_{Al} - O_N -3N and V_{Al} - O_N -2N two types of defects and F-type defects aggregation. Green light emission band is due to energy transition emit light of among valence band of Al atoms in the basement.

Fig. 1 FTIR spectra of AlN irradiated with 100 MeV $^{\rm 238}\,\rm U$ ions.

Fig. 2 PL spectra of AlN irradiated with 100 MeV $^{\rm 238}\,\rm U$ ions.

Fig. 3 PL spectrum of gaussian function decomposition of AlN irradiated with 100 MeV ²³⁸U ions.